Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

Identifieur interne : 003151 ( Main/Exploration ); précédent : 003150; suivant : 003152

Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

Auteurs : Robert Nilsson [Suède] ; Katja Bernfur ; Niklas Gustavsson ; Joakim Bygdell ; Gunnar Wingsle ; Christer Larsson

Source :

RBID : pubmed:19955078

Descripteurs français

English descriptors

Abstract

By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

DOI: 10.1074/mcp.M900289-MCP200
PubMed: 19955078
PubMed Central: PMC2830847


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.</title>
<author>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, SE-90183 Umeå, Sweden. robert.nilsson@genfys.slu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, SE-90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE-90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bernfur, Katja" sort="Bernfur, Katja" uniqKey="Bernfur K" first="Katja" last="Bernfur">Katja Bernfur</name>
</author>
<author>
<name sortKey="Gustavsson, Niklas" sort="Gustavsson, Niklas" uniqKey="Gustavsson N" first="Niklas" last="Gustavsson">Niklas Gustavsson</name>
</author>
<author>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</author>
<author>
<name sortKey="Larsson, Christer" sort="Larsson, Christer" uniqKey="Larsson C" first="Christer" last="Larsson">Christer Larsson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19955078</idno>
<idno type="pmid">19955078</idno>
<idno type="doi">10.1074/mcp.M900289-MCP200</idno>
<idno type="pmc">PMC2830847</idno>
<idno type="wicri:Area/Main/Corpus">003379</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003379</idno>
<idno type="wicri:Area/Main/Curation">003379</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003379</idno>
<idno type="wicri:Area/Main/Exploration">003379</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.</title>
<author>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, SE-90183 Umeå, Sweden. robert.nilsson@genfys.slu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, SE-90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE-90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bernfur, Katja" sort="Bernfur, Katja" uniqKey="Bernfur K" first="Katja" last="Bernfur">Katja Bernfur</name>
</author>
<author>
<name sortKey="Gustavsson, Niklas" sort="Gustavsson, Niklas" uniqKey="Gustavsson N" first="Niklas" last="Gustavsson">Niklas Gustavsson</name>
</author>
<author>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</author>
<author>
<name sortKey="Larsson, Christer" sort="Larsson, Christer" uniqKey="Larsson C" first="Christer" last="Larsson">Christer Larsson</name>
</author>
</analytic>
<series>
<title level="j">Molecular & cellular proteomics : MCP</title>
<idno type="eISSN">1535-9484</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATP-Binding Cassette Transporters (metabolism)</term>
<term>Cell Membrane (metabolism)</term>
<term>Cell Wall (metabolism)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Organ Specificity (MeSH)</term>
<term>Peptides (metabolism)</term>
<term>Phloem (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (metabolism)</term>
<term>Proteomics (methods)</term>
<term>Receptors, Cell Surface (metabolism)</term>
<term>Solubility (MeSH)</term>
<term>Trees (metabolism)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (métabolisme)</term>
<term>Bois (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Peptides (métabolisme)</term>
<term>Phloème (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (cytologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéomique (méthodes)</term>
<term>Récepteurs de surface cellulaire (métabolisme)</term>
<term>Solubilité (MeSH)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Transporteurs ABC (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
<term>Membrane Transport Proteins</term>
<term>Peptides</term>
<term>Plant Proteins</term>
<term>Receptors, Cell Surface</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Cell Wall</term>
<term>Phloem</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Bois</term>
<term>Feuilles de plante</term>
<term>Membrane cellulaire</term>
<term>Paroi cellulaire</term>
<term>Peptides</term>
<term>Phloème</term>
<term>Populus</term>
<term>Protéines de transport membranaire</term>
<term>Protéines végétales</term>
<term>Récepteurs de surface cellulaire</term>
<term>Transporteurs ABC</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mass Spectrometry</term>
<term>Organ Specificity</term>
<term>Phylogeny</term>
<term>Solubility</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
<term>Solubilité</term>
<term>Spectrométrie de masse</term>
<term>Spécificité d'organe</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19955078</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-9484</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular & cellular proteomics : MCP</Title>
<ISOAbbreviation>Mol Cell Proteomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.</ArticleTitle>
<Pagination>
<MedlinePgn>368-87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/mcp.M900289-MCP200</ELocationID>
<Abstract>
<AbstractText>By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nilsson</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, SE-90183 Umeå, Sweden. robert.nilsson@genfys.slu.se</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bernfur</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gustavsson</LastName>
<ForeName>Niklas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bygdell</LastName>
<ForeName>Joakim</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wingsle</LastName>
<ForeName>Gunnar</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Larsson</LastName>
<ForeName>Christer</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Proteomics</MedlineTA>
<NlmUniqueID>101125647</NlmUniqueID>
<ISSNLinking>1535-9476</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018528">ATP-Binding Cassette Transporters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011956">Receptors, Cell Surface</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018528" MajorTopicYN="N">ATP-Binding Cassette Transporters</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011956" MajorTopicYN="N">Receptors, Cell Surface</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19955078</ArticleId>
<ArticleId IdType="pii">M900289-MCP200</ArticleId>
<ArticleId IdType="doi">10.1074/mcp.M900289-MCP200</ArticleId>
<ArticleId IdType="pmc">PMC2830847</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):324-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):63-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Jan;7(1):165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7894507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 May 15;420(1):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19216717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Apr 1;115(Pt 7):1345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11896182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2394-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18807-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Struct Funct. 2004 Apr;29(2):49-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15342965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jun;221(4):538-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9353-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Oct;79(2):530-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Jan;8(1):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19053836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2007;230(3-4):203-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17458635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14563927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 May;225(6):1447-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17171374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Jul 1;1664(1):9-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2004 Sep-Oct;327(9-10):827-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15587074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Nov;11(11):519-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Jul;6(7):1198-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Oct;222(1):44-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7856869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 6;323(5919):1360-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Mar;4(3):86-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 1998;76(5):779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Apr 10;381(3):424-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19222996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Dec 1;314(5804):1410-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17138891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2922-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 May 14;338(5):1027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3003-8; discussion 3001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2000;16:333-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11031240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2008;2008:420747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Sep;4(9):1265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Apr;13(4):151-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18299247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Dec;7(6):651-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(1):146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Aug;5(8):1396-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Dec;9(6):589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Nov;6(11):1980-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jan;216(3):355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Nov 16;363(2):375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17869214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3378-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):722-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(11):241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6518-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:221-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Apr;208(2):205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10333584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):803-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Dec;11(6):653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1191-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:407-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(11):2979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jun;3(6):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15932943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 1997;174:195-291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9161008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):731-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(5):794-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Feb;8(2):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Dec;11(12):2379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10590165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1978 Apr 26;533(2):525-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">647023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Nov;45(11):1543-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1128-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):179-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(5):618-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Jul;8(7):1181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8768376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(6):823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):681-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Dec;9(6):621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Int Rep. 1991 Oct;15(10):973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1773445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):961-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17885081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1051-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11526204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17727615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2007 Dec;39(5-6):409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18000746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 Nov;206(4):504-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9821685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Nov 8;298(5596):1209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12424373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18500984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 May;9(9):2355-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402043</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bernfur, Katja" sort="Bernfur, Katja" uniqKey="Bernfur K" first="Katja" last="Bernfur">Katja Bernfur</name>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
<name sortKey="Gustavsson, Niklas" sort="Gustavsson, Niklas" uniqKey="Gustavsson N" first="Niklas" last="Gustavsson">Niklas Gustavsson</name>
<name sortKey="Larsson, Christer" sort="Larsson, Christer" uniqKey="Larsson C" first="Christer" last="Larsson">Christer Larsson</name>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003151 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003151 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19955078
   |texte=   Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19955078" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020